Giải bài 23 trang 80 SGK toán 8 tập 1
Giải bài 23 trang 80 SGK toán 8 tập 1

Tóm tắt lý thuyết và Giải bài 20,21 trang 79; giải bài 22,23, 24,25 trang 80 SGK Toán 8 tập 1: Đường trung bình của tam giác, của hình thang – hình học.

Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh của tam giác.

Định lí 1: Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm của cạnh thứ ba,

Định lí 2: Đường-trung-bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.

∆ABC, AD = DB, AE = EC => DE // BC, DE = 1/2BC

Đường trung bình của hình thang là đoạn thẳng nối trung điểm hai cạnh bên của hình thang.

Định lí 1: Đường thẳng đi qua trung điểm một cạnh bên của hình thang và song song với hai đáy thì đi qua trung điểm cạnh bên thứ hai.

Định lí 2: Đường-trung-bình của hình thang thì song song với hai đáy và bằng nửa tổng hai đáy.

Đáp án và hướng dẫn giải bài tập trong SGK trang 79,80 SGK Toán 8 tập 1

Bài 20. Tìm x trên hình 41.

Giải: Ta có ∠K = ∠C = 500 nên IK // BC (∠K = ∠C(đồng vị))

Mà KA = KC suy ra IA = IB = 10cm

Vậy x = 10cm

Advertisements (Quảng cáo)

Bài 21. Tính khoảng cách AB giữa hai mũi của compa trên hình 42, biết rằng C là trung điểm của OA, D là trung điểm của OB và OD = 3cm.

Giải: XétΔOAB Ta có CO = CA (gt)

DO = DB (gt)

Nên CD là đường trung bình của ∆OAB.

Do đó CD =1/2AB

Suy ra AB = 2CD = 2.3 = 6cm.

Bài 22 trang 80. Cho hình 43. Chứng minh rằng AI = IM.

Xét ∆BDC có BE = ED và BM = MC (giả thiết) ⇒ ME là đường trung bình của ∆BDC

nên EM // DC Suy ra DI // EM

Xét ∆AEM có AD = DE và DI // EM nên AI = IM.

Bài 23. Tìm x trên hình 44.

Giải: Xét tứ giác MNPQ có MP⊥PQ và NQ⊥PQ ⇒ MP//NQ ⇒ tứ giác MNPQ là hình thang

Mặt khác: IK⊥PQ và MP⊥PQ ⇒ IK//MP, MI=IN ⇒ IK là đường trung bình của hình thang MNPQ ⇒ KQ= KP = 5 dm ⇒x = 5 dm

Bài 24 trang 80. Hai điểm A và B thuộc cùng một nửa mặt phẳng có bờ là đường xy. Khoảng cách từ điểm A đến xy bằng 12cm, khoảng cách từ điểm B đến xy bằng 20cm. Tính khoảng cách từ trung điểm C của AB đến xy.

Đáp án:

Kẻ AP⊥xy, BQ ⊥xy và CK⊥xy lần lượt tại P,Q,K

⇒ AP//CK//BQ ⇒ tứ giác APQB là hình thang

Mặt khác: AC = CB ⇒ CK là đường-trun- bình của hình thang APQB

⇒ CK = (AP+BQ)/2 = (12+20)/2 = 16 cm

Bài 25 trang 80 SGK Toán 8 hình học. Hình thang ABCD có đáy AB, CD. Gọi E, F, K theo thứ tự là trung điểm của AD, BC, BD. Chứng minh ba điểm E, K, F thẳng hàng.

Ta có: EA = ED và KB = KD ⇒ EK là đường-trung bình của ΔDAB ⇒ EK//AB (1)

Ta có: FB = FC và KB = KD ⇒ FK là đường trung-bình của ΔBCD ⇒ FK//CD (2)

Mặt khác AB//CD (giả thiết) (3)

Từ (1),(2),(3) ⇒ EK//FK//AB

Qua K ta có EK và FK cùng song song với AB nên theo tiên đề Ơclit ba điểm E, K, F thẳng hàng.

Bạn đang xem bài viết: Bài 20,21,22, 23,24,25 trang 79,80 Toán lớp 8 tập 1: Đường trung bình của tam giác, của hình thang. Thông tin được tạo bởi Trung Tâm Tiêng Anh Gemma chọn lọc và tổng hợp cùng với các chủ đề liên quan khác.